miércoles, 1 de junio de 2011

Estrategia General De La Terapia Genica

La estrategia general que se utiliza para la terapia génica no es más que una extensión de la técnica de selección clonal por complementación funcional. Primero, la función ausente en el organismo recipiente como consecuencia de la presencia de un gen defectuosos se introduce en un vector; luego, este vector se inserta en uno de los cromosomas recipientes y genera un organismo transgénico que se ha "curado" genéticamente. Esta técnica tiene un enorme potencial en los seres humanos porque nos ofrece la esperanza de corregir los desordenes genéticos.

  1. Aunque dentro de unos años será posible mediante la terapia génica reparar los errores que existen en un gen y causan la enfermedad, los objetivos actuales son más modestos. En primer lugar, la terapia génica trata de complementar o sustituir el defecto en la función de un gen defectuoso introduciendo otra copia normal de éste en las células.
    Por otra parte, en otras situaciones lo que se intenta es lo contrario, es decir, inhibir o bloquear el funcionamiento de aquellos genes cuya intervención contribuye al desarrollo de la enfermedad (por ejemplo los oncogenes que intervienen en el cáncer o los genes de virus que son necesarios para que estos se multipliquen en las células).
    Por último, existen otras posibilidades de acción de la terapia génica en la que lo que se busca no es suplir o inactivar la función de un gen, sino introducir la información que permita a la célula sintetizar una proteína que tenga un efecto terapéutico nuevo. Este es el caso de la transferencia de genes para estimular el sistema inmune para que actúe frente a tumores o enfermedades infecciosas, para que se acelere la reparación de heridas, fracturas o se produzcan nuevos vasos sanguíneos, etc.

Riesgos Por El Transplante De Genes

A medida que la ingeniería genética avanza surgen interrogantes sobre sus riesgos, tanto para la salud humana como para el funcionamiento de los ecosistemas. Por ello, existen reglamentaciones sobre las condiciones legales de utilización y diseminación de los organismos genéticamente modificados, en las que colaboran genetistas, bioéticos y juristas.
Es difícil estimar los riesgos y las consecuencias de la discrepancia entre el comportamiento efectivo del organismo genéticamente modificado y el comportamiento esperado.
La mayoría de los riesgos están relacionados con la producción y utilización de vectores para transmitir un gen extraño a una célula.
  • En cuanto a la producción de vectores, éstos suelen ser de origen vírico y, aunque se eligen atendiendo a su seguridad de empleo, es posible una recombinación genética entre el virus y las células de complementación, la cual puede originar partículas víricas replicativas capaces de infectar a otras células.
  • Respecto al uso terapéutico de vectores genéticamente modificados, cabe la posibilidad de que haya recombinación en el organismo humano. Si la célula blanco ya está infectada por un virus, una recombinación puede transformar el vector en virus infeccioso. Se eligen retrovirus que no tengan secuencias homólogas con los virus que infectan al hombre. Para evitar la diseminación de genes por virus, se limita el uso de vectores a determinados recintos.
  • Otro tipo de peligro se debe a la capacidad de los vectores retrovíricos de inducir la producción de tumores. Para evitarlo, se insertan en los vectores retrovíricos genes suicidas.
Pese a las precauciones los riesgos no se pueden eliminar totalmente. Habrá que idear procedimientos que garanticen la seguridad del enfermo y de su entorno. De este modo, podrá ser aceptada la terapia génica, con sus riesgos y con sus beneficios.
Otra clase de riesgos está relacionada con las modificaciones genéticamente de células germinales. Ya se han transformado células precursoras de espermatozoides en ratones; estas modificaciones se transmitirán a la descendencia. La tecnología abre diversas vías de investigación, como el estudio de la biología básica de la producción de espermatozoides, o el empleo de células precursoras de estos gametos en experimentos de ingeniería genética y terapia génica, ya que las alteraciones pasarían a las siguientes generaciones.
Las aplicaciones pueden ser beneficiosas, pero también problemáticas. Algunos expertos ya han señalado la diferencia que existe entre introducir genes nuevos para tratar una enfermedad y alterar el linaje de un individuo, lo cual puede crear graves desórdenes genéticos. Existe un debate sobre si los científicos deben, siquiera, intentar eliminar las enfermedades genética mediante terapias génicas de las células germinales.
Los peligros sobre los ecosistemas remiten a la posibilidad de diseminación del gen hacia otras especies y a las consecuencias de introducir organismos nuevos en un ecosistema, que siempre perturba los equilibrios ecológicos. Los movimientos ecologistas destacan que la propagación de un transgén por el ecosistema puede ir acompañada de efectos indeseables, como el caso del gen que codifica una toxina contra insectos parásitos de plantas, el cual puede favorecer el desarrollo de cepas de parásitos resistentes a esta toxina. Igualmente, se deberían evaluar los riesgos ligados a la diseminación de animales transgénicos, ya que es difícil evitar que escapen de los recintos de explotación, fundamentalmente, en los animales acuáticos y en los insectos, y que se crucen con los silvestres o que compitan con ellos.
  • El peligro que supone manejar microorganismos manipulados genéticamente depende de su capacidad para sobrevivir e intercambiar material genético con comunidades de microorganismos autóctonos.
Su impacto en el medio ambiente es difícil de predecir; algunas especies podrían desplazarse o desaparecer, y las funciones y la estructura de las comunidades microbianas podría cambiar, alterando el funcionamiento del ecosistema.
A causa del insuficiente conocimiento de los efectos de la ingeniería genética, la legislación actual debería ser restrictiva y hacerse más permisiva a medida que avanzasen los conocimientos sobre el tema.

viernes, 20 de mayo de 2011

Conclusiones...

La Terapia Génica es una gran promesa para el futuro, aplicable a una variedad de enfermedades que han estado fuera del alcance de la terapia convencional, como es el caso del tratamiento de enfermedades del sistema nervioso central (SNC), donde no han sido eficientes algunos métodos por la carencia de un sistema de dispensación eficiente que cruce la barrera hematoencefálica,los efectos asociados con la administración sistémica y la inestabilidad de las moléculas.Los resultados obtenidos en los ensayos clínicos hasta ahora realizados, demuestran que resulta factible la aplicación de la terapia génica, tanto in vivo como in vitro. De hecho, en el caso de la liberación de NGF mediante el implante de fibroblastos, se ha planteado que resulta factible la aplicación de otros ensayos clínicos.Si bien, la aplicación de la Terapia Génica de manera inmediata resulta prometedora, todavía quedan aspectos en los que hay que profundizar.
Actualmente, la cuestión de los vectores de transferencia de genes es uno de los problemas técnicos más importantes que se presenta y que hasta ahora ha limitado la obtención de resultados satisfactorios. Definitivamente, se necesita el desarrollo de vectores de nuevas generaciones para solucionar los problemas de bioseguridad implícitos al utilizar la Terapia Génica.
Pese a los problemas técnicos de terapia génica somática, esta temática se ha ido desarrollando y siguen siendo una vía muy prometedora, para la lucha contra un buen número de enfermedades genéticas. Existe un amplio acuerdo sobre la idea de que la terapia génica somática no plantea problemas éticos distintos a los de cualquier otro tratamiento terapéutico nuevo en fase experimental. Pero se considera muy necesario que los protocolos que se pongan en práctica se desarrollen con un control estricto por parte de las comisiones científicas y éticas destinadas a tal fin. Por lo que se refiere a la terapia germinal, resulta rechazable porque sus supuestas ventajas no compensan los peligros asociados a la misma, toda vez que existen alternativas terapéuticas con el mismo potencial y que no comparten los mismos riesgos.
Teniendo en cuenta que los riesgos relacionados con la transferencia génica poseen mayores incertidumbres que las terapias convencionales, los comités de éticas tienen un papel fundamental. Estos comités están obligados a evaluar la proporcionalidad entre la magnitud de los riesgos y los posibles beneficios terapéuticos, así como vigilar la ocurrencia de riesgos en el experimento una vez que el mismo haya sido aprobado. Los participantes de un ensayo de terapia génica están expuestos a posibles dañosimprevistos que pueden ser serios y latentes. Por esta razón, se debe garantizar la calidad científica del procedimiento y que el aporte de conocimientos del ensayo justifique la exposición de los pacientes a los riesgos.Uno de los aspectos que atentan contra el buen desarrollo de este tipo de terapia es la existencia de comités de éticas locales encargados de la revisión de los ensayos. Se recomienda, en estos casos, que el proyecto experimental sea enviado, además, a equipos revisores expertos

Terapia En Celulas Somaticas

La terapia génica en células somatica, que ha sido el núcleo central de la investigación de terapia génica en seres humanos, consiste en la introducción de genes normales en células somáticas humanas para tratar un trastorno especifico. Las células del paciente pueden extraerse y manipularse fuera del cuerpo (terapia ex vivo) o, en algunos casos, las células pueden tratarse mientras permanecen en el cuerpo (terapia in vivo).
  • Algunos tipos de células somáticas son más apropiadas para la terapia génica que otros. Los buenos candidatos deben ser fácilmente accesibles y tener una vida media prolongada en el organismo. En algunos sistemas de cesión genética son preferibles las células en proliferación ya que, en este caso, el vector portador del gen puede integrarse en el interior del DNA de la célula.
  • No todos los tipos de enfermedades son apropiadas para la terapia génica. Es probable que muchas enfermedades dominantes, en especial las causadas por mutaciones dominantes negativas, sean difíciles de tratar porque requerirían de un bloqueo del efecto del gen. La terapia génica alcanza sus objetivos con más facilidad en las enfermedades recesivas que implican la presencia de un producto genético defectuoso o perdido. En este caso, la inserción de un gen normal sustituiría al producto perdido.
  • Muchos trastornos recesivos de deficiencia enzimática pueden corregirse, en potencia, cuando se produce alrededor de 10% del nivel enzimático normal.
  • Existen muchos posibles métodos de introducción de genes en las células, incluyendo la fusión celular, la coprecipitación de fosfato cálcico (el compuesto químico altera la membrana celular, facilitando la introducción del DNA extraño), las microinyecciones y la fusión de liposomas. Los dos sistemas de cesión más utilizados son: los retrovirus y los adenovirus.

Procedimiento...

Aunque se han utilizado enfoques muy distintos, en la mayoría de los estudios de terapia génica, una copia del gen funcional se inserta en el genoma para compensar el defectivo. Si ésta copia simplemente se introduce en el huésped, se trata de terapia génica de adición. Si tratamos, por medio de la recombinación homóloga, de eliminar la copia defectiva y cambiarla por la funcional, se trata de terapia de sustitución.
Actualmente, el tipo más común de vectores utilizados son los virus, que pueden ser genéticamente alterados para dejar de ser patógenos y portar genes de otros organismos. No obstante, existen otros tipos de vectores de origen no vírico que también han sido utilizados para ello.
Las células diana del paciente se infectan con el vector (en el caso de que se trate de un virus) o se transforman con el ADN a introducir. Este ADN, una vez dentro de la célula huésped, se transcribe y traduce a una proteína funcional, que va a realizar su función, y, en teoría, a corregir el defecto que causaba la enfermedad.

Riesgos Del Transplante En Los Genes

La mayoría de los riesgos están relacionados con la producción y utilización de vectores para transmitir un gen extraño a una célula.
En cuanto a la producción de vectores, éstos suelen ser de origen vírico y, aunque se eligen atendiendo a su seguridad de empleo, es posible una recombinación genética entre el virus y las células de complementación, la cual puede originar partículas víricas replicativas capaces de infectar a otras células.
Respecto al uso terapéutico de vectores genéticamente modificados, cabe la posibilidad de que haya recombinación en el organismo humano. Si la célula blanco ya está infectada por un virus, una recombinación puede transformar el vector en virus infeccioso. Se eligen retrovirus que no tengan secuencias homólogas con los virus que infectan al hombre. Para evitar la diseminación de genes por virus, se limita el uso de vectores a determinados recintos.
  • Otro tipo de peligro se debe a la capacidad de los vectores retrovíricos de inducir la producción de tumores. Para evitarlo, se insertan en los vectores retrovíricos genes suicidas.
Pese a las precauciones los riesgos no se pueden eliminar totalmente. Habrá que idear procedimientos que garanticen la seguridad del enfermo y de su entorno. De este modo, podrá ser aceptada la terapia génica, con sus riesgos y con sus beneficios.
  • Otra clase de riesgos está relacionada con las modificaciones genéticamente de células germinales. Ya se han transformado células precursoras de espermatozoides en ratones; estas modificaciones se transmitirán a la descendencia. La tecnología abre diversas vías de investigación, como el estudio de la biología básica de la producción de espermatozoides, o el empleo de células precursoras de estos gametos en experimentos de ingeniería genética y terapia génica, ya que las alteraciones pasarían a las siguientes generaciones.
Las aplicaciones pueden ser beneficiosas, pero también problemáticas. Algunos expertos ya han señalado la diferencia que existe entre introducir genes nuevos para tratar una enfermedad y alterar el linaje de un individuo, lo cual puede crear graves desórdenes genéticos. Existe un debate sobre si los científicos deben, siquiera, intentar eliminar las enfermedades genética mediante terapias génicas de las células germinales.
Los peligros sobre los ecosistemas remiten a la posibilidad de diseminación del gen hacia otras especies y a las consecuencias de introducir organismos nuevos en un ecosistema, que siempre perturba los equilibrios ecológicos. Los movimientos ecologistas destacan que la propagación de un transgén por el ecosistema puede ir acompañada de efectos indeseables, como el caso del gen que codifica una toxina contra insectos parásitos de plantas, el cual puede favorecer el desarrollo de cepas de parásitos resistentes a esta toxina. Igualmente, se deberían evaluar los riesgos ligados a la diseminación de animales transgénicos, ya que es difícil evitar que escapen de los recintos de explotación, fundamentalmente, en los animales acuáticos y en los insectos, y que se crucen con los silvestres o que compitan con ellos.
El peligro que supone manejar microorganismos manipulados genéticamente depende de su capacidad para sobrevivir e intercambiar material genético con comunidades de microorganismos autóctonos. Su impacto en el medio ambiente es difícil de predecir; algunas especies podrían desplazarse o desaparecer, y las funciones y la estructura de las comunidades microbianas podría cambiar, alterando el funcionamiento del ecosistema.
A causa del insuficiente conocimiento de los efectos de la ingeniería genética, la legislación actual debería ser restrictiva y hacerse más permisiva a medida que avanzasen los conocimientos sobre el tema.

Problemas De La Terapia Genica Y De Sus Aplicaciones

Un concepto muy importante del que radican algunos aspectos de la seguridad de la terapia génica es el de la barrera Weismann. Se refiere al hecho de que la información hereditaria sólo va de células germinales a células somáticas, y no al revés.
La terapia génica en células germinales es mucho más controvertida que en células somáticas, pero aún así, si la barrera Weismann fuera permeable a algún intercambio de información, como algunos autores señalan, incluso la terapia en células somáticas podría tener problemas éticos y de seguridad que antes no habrían sido considerados.
La naturaleza de la propia terapia génica y sus vectores, implica que en muchas ocasiones los pacientes deben repetir la terapia cada cierto tiempo porque ésta no es estable y su expresión es temporal.
La respuesta inmune del organismo ante un agente extraño como un virus o una secuencia de DNA exógena. Además, esta respuesta se refuerza en las sucesivas aplicaciones de un mismo agente.
Problemas relacionados los vectores virales. Podrían contaminarse tanto por sustancias químicas como por virus con capacidad de generar la enfermedad. Implican también riesgos de respuesta inmune
Trastornos multigénicos: representan un reto muy grande para este tipo de terapia, ya que se trata de enfermedades cuyo origen reside en mutaciones en varios genes, y aplicar el tratamiento se encontraría con las dificultades clásicas de la terapia multiplicadas por el número de genes a tratar.
Posibilidad de inducir un tumor por mutagénesis. Esto puede ocurrir si el ADN se integra por ejemplo en un gen supresor tumoral. Se ha dado este caso en los ensayos clínicos para SCID ligada al cromosoma X, en los cuales 3 de 20 pacientes desarrollaron leucemia.

miércoles, 18 de mayo de 2011

Experimentos En Animales

Los experimentos con animales conforman una parte fundamental en el estudio de cualquiera de las aplicaciones de terapia génica.
Sus dos objetivos principales son:
  • El análisis de la seguridad del sistema de vectores.
  • El estudio de la eficacia de la transferencia de genes.
El efecto de la dosis y su duración es comprobado en varias especies, incluyendo primates y otros animales que sean hospedadores para el virus salvaje (por ejemplo, las ratas del algodón se usan para el estudio de adenovirus). Se analiza la difusión de secuencias vitales, especialmente a las gónadas, y cualquier efecto adverso, como la inflamación tras la administración del vector. El propósito de estos ensayos no es mostrar que el vector no produce efectos adversos —cualquier clase de droga tiene esa capacidad en determinada dosis—, sino precisar el tipo de suceso adverso que podría esperarse si los humanos estuvieran expuestos al vector, y fijar las posibles dosis que pueden acarrear estos sucesos. Para una enfermedad genética, un ratón con un gen eliminado o un animal con el fenotipo apropiado sería válido en este tipo de estudio.

Estadisticas De Ensayos De La Terapia Genica En La Actualidad

En el momento actual se han descrito en la literatura 425 protocolos para realizar terapia génica en humanos y se han intervenido más de 3.400 pacientes en el mundo. El 70% de las terapias realizadas han sido para intervenir procesos neoplásicos, un 12 % sobre enfermedades infecciosas y un 9% sobre patologías unigénicas. Los métodos más utilizados como vectores son el retrovirus, los liposomas y los adenovirus.

Principales Acontecimientos Del Desarrollo De La Terapia Genica


En 1990, W. French Anderson propone el uso de células de médula ósea tratadas con un vector retroviral que porta una copia correcta del gen que codifica para la enzima adenosina desaminasa,la cual se encuentra mutada en una enfermedad que forma parte del grupo de las inmunodeficiencias severas combinadas (SCID). Realizó la transformación ex-vivo con los linfocitos T del paciente, que luego se volvieron a introducir en su cuerpo. Cinco años más tarde, publicaron los resultados de la terapia,que contribuyó a que la comunidad científica y la sociedad consideraran las posibilidades de ésta técnica.
No obstante, el apoyo a la terapia fue cuestionado cuando algunos niños tratados para SCID desarrollaron leucemia. Las pruebas clínicas se interrumpieron temporalmente en el 2002, a causa del impacto que suposo el caso de Jesse Gelsinger, la primera persona reconocida públicamente como fallecida a causa de la terapia génica. Existe una bibliografía numerosa sobre el tema, y es destacable el informe que la FDA emitió señalando el conflicto de intereses de algunos de los médicos implicados en el caso así como los fallos en el procedimiento. En el año 2002, cuatro ensayos en marcha de terapia génica se paralizaron al desarrollarse en un niño tratado una enfermedad similar a la leucemia.Posteriormente, tras una revisión de los procedimientos, se reanudaron los proyectos en marcha.
2003
Un equipo de investigadores de la universidad de California, en Los Ángeles, insertó genes en un cerebro utilizando liposomas recubiertos de un polímero llamado polietilen glicol (PEG).La transferencia de genes en este órgano es un logro significativo porque los vectores virales son demasiado grandes para cruzar la “barrera hematoencefálica”. Este método tiene el potencial para el tratamiento de la enfermedad del Parkinson.
También la interferencia por ARN se planteó en éste año para tratar la enfermedad de Huntington.

2006

Científicos del NIH tratan exitosamente un melanoma metastásico en dos pacientes, utilizando células T para atacar a las células cancerosas. Este estudio constituye la primera demostración de que la terapia génica puede ser efectivamente un tratamiento contra el cáncer.
En Marzo del 2006, un grupo internacional de científicos anunció el uso exitoso de la terapia génica para el tratamiento de dos pacientes adultos contagiados por una enfermedad que afecta a las células mieloides. El estudio, publicado en Nature Medicine, es pionero en mostrar que la terapia génica puede curar enfermedades del sistema mieloide.
En Mayo del 2006, un equipo de científicos dirigidos por el Dr. Luigi Naldini y el Dr. Brian Brown del Instituto de San Raffaele Telethon para la Terapia Génica (HSR-TIGET) en Milán, informaron del desarrollo de una forma de prevenir que el sistema inmune pueda rechazar la entrada de genes. Los investigadores del Dr. Naldini observaron que se podía utilizar la función natural de los microRNA para desactivar selectivamente los genes terapéuticos en las células del sistema inmunológico. Este trabajo tiene implicaciones importantes para el tratamiento de la hemofilia y otras enfermedades genéticas.
En Noviembre del mismo año, Preston Nix de la Universidad de Pensilvania informó sobre VRX496, una inmunoterapia para el tratamiento del HIV que utiliza un vector lentiviral para transportar un DNA antisentido contra la envuelta del HIV. Fue la primera terapia con un vector lentiviral aprobada por la FDA para ensayos clínicos. Los datos de la fase I/II ya están disponibles.

2007

El 1 de mayo del 2007, el hospital Moorfields Eye y la universidad College London´s Institute of Ophthalmology anunciaron el primer ensayo de terapia génica para la enfermedad hereditaria de retina. La primera operación se llevó a cabo en un varón británico de 23 años de edad, Robert Johnson, a principios de este año.La Amaurosis congénita de Leber es una enfermedad hereditaria que causa la ceguera por mutaciones en el gen RPE65. Los resultados de la Moorfields/UCL se publicaron en New England Journal of Medicine. Se investigó la transfección subretiniana por el virus recombinante adeno-asociado llevando el gen RPE65, y se encontraron resultados positivos. Los pacientes mostraron cierto incremento de la visión, y no se presentaron efectos secundarios aparentes.Los ensayos clínicos de esta terapia se encuentran en fase I.
2008
Investigadores de la Universidad de Míchigan en Ann Arbor (Estados Unidos) desarrollaron una terapia genética que ralentiza y recupera las encías ante el avance de la enfermedad periodontal, la principal causa de pérdida de dientes en adultos.[16] Los investigadores descubrieron una forma de ayudar a ciertas células utilizando un virus inactivado para producir más cantidad de una proteína denominada receptor TNF. Este factor se encuentra en bajas cantidades en los pacientes con periodontitis. La proteína administrada permite disminuir los niveles excesivos de TNF, un compuesto que empeora la destrucción ósea inflamatoria en pacientes que sufren de artritis, deterioro articular y periodontitis. Los resultados del trabajo mostraron que entre el 60 y el 80 por ciento de los tejidos periodontales se libraban de la destrucción al utilizar la terapia génica.

2009

En Septiembre de 2009, se publicó en Nature que unos investigadores de la Universidad de Washington y la Universidad de Florida fueron capaces de proporcionar visión tricromática a monos ardilla usando terapia génica.
En noviembre de ese mismo año, la revista Science publicó resultados alentadores sobre el uso de terapia génica en una enfermedad muy grave del cerebro, la adrenoleucodistrofia, usando un vector retroviral para el tratamiento.

Vectores En La Terapia Genica

Los vectores que transportan material genético dentro de las células son de tipo viral o no viral. En los primeros se ha trabajado principalmente con Adenovirus, Herpes virus y Retrovirus. Estos son modificados para disminuir su capacidad replicativa haciéndolos inocuos para la célula. Los métodos no virales incluyen transporte del DNA en liposomas, electroporación, inyecciones de DNA desnudo o bombardeo con partículas de oro.
La gran diversidad de situaciones en las que podría aplicarse la terapia génica hace imposible la existencia de un solo tipo de vector adecuado. Sin embargo, pueden definirse las siguientes características para un "vector ideal" y adaptarlas luego a situaciones concretas:
  • Que sea reproducible.
  • Que sea estable.
  • Que permita la inserción de material genético sin límite de tamaño.
  • Que permita la transducción tanto en células en división como en aquellas que no están proliferando.
  • Que posibilite la integración específica del gen terapéutico.
  • Que reconozca y actúe sobre células específicas.
  • Que la expresión del gen terapéutico pueda ser regulada.
  • Que carezca de elementos que induzcan una respuesta inmune.
  • Que pueda ser caracterizado completamente.
  • Que sea inocuo o que sus posibles efectos secundarios sean mínimos.
  • Que sea fácil de producir y almacenar.
  • Que todo el proceso de su desarrollo tenga un coste razonable.
Los vectores van a contener los elementos que queramos introducir al paciente, que no van a ser sólo los genes funcionales, sino también elementos necesarios para su expresión y regulación, como pueden ser promotores, potenciadores o secuencias específicas que permitan su control bajo ciertas condiciones.
Podemos distinguir dos categorías principales en vectores usados en terapia génica: virales y no virales.


Vectores virales
Los retrovirus comprenden una clase de virus cuyo material genético es una cadena sencilla de ARN; durante su ciclo vital, el virus se transcribe en una molécula bicatenaria de ADN, gracias a la acción de la enzima reverso transcriptasa, que se integra en el genoma de la célula huésped sin aparente daño para ella. La mayor parte de los retrovírus a excepción del HIV, sólo se pueden integrar en células con capacidad para replicarse, lo cual restringe su uso. Sin embargo, se pueden desarrollar en grandes cantidades y su expresión en la célula hospedadora se realiza durante largos periodos de tiempo. Los adenovirus son un conjunto de virus con ADN lineal de cadena doble. Los vectores de adenovirus son más grandes y complejos que los retrovirus, pues en su construcción solamente se elimina una pequeña región del material genético vírico. Su ciclo de infección, que comprende de 32 a 36 horas en un cultivo celular conlleva en primer lugar la síntesis de ADN de la célula y, posteriormente la sintesis y ensamblaje del ADN y las proteínas víricas. Las infecciones de estos virus en seres humanos están asociadas a enfermedades benignas, como la conjuntivitis.
La Principal ventaja de su utilización en la terapia génica es que se pueden producir en grandes cantidades y transfieren de forma muy eficaz el material genético a un número elevado de células y tejidos, aunque el hospedador parece limitar la duración de la expresión del nuevo material genético. Los virus adenoasociados son muy pequeño no autónomos y con ADN lineal de cadena sencilla. Para la replicación de estos virus es necesaria la confección con adenovirus. La inserción del material genetico de los adenovírus asociados se suele producir en regiones del cromosoma 19. Los vectores que se forman con este tipo de virus son muy simples, no pueden exceder en mucho la longitud del ADN viral, aproximadamente 4.680 nucleótidos, y son capaces de expresarse a largo plazo en las células que no se dividen; sin embargo, la respuesta que producen en la célula hospedadora es menor que la que se ocasiona con el tratamiento con adenovirus y es difícil la producción de este vector en grandes cantidades. Los herpesvirus poseen un material genético compuesto por ADN de doble cadena lineal, con un tamaño aproximado de 100 a 250 Kb.
Presentan variaciones en cuanto al tamaño y organización del genoma, contenido genético o células sobre las que actúan. Pero por regla general, este tipo de  de virus son muy útiles, pues es posible insertar en su genoma grandes cantidades de ADN extraño y llevar a cabo durante largos periodos de tiempo infecciones latentes en la célula hospedadora, sin ningún efecto aparente sobre ésta. En la clase de los gamma-herpesvirus como el virus de Epstein-Barr, se pueden producir infecciones latentes en células en  división, de modo que el material genético que lleva insertado el virus se replica conjuntamente a la división celular y se hereda en toda la nueva progenie de células. El inconveniente que presentan estos virus es que están asociados a daños linfoproliferativos, con lo cual, para su uso como vectores es necesario identificar estos genes y eliminarlos, manteniendo únicamente aquellos que permitan la replicación del virus y el mantenimiento del plásmido viral. Hasta la fecha, el uso fundamental de los herpesvirus en la terapia génica se limita al empleo in vivo del herpes simples (HSV)
Vectores no virales
El bombardeo de partículas constituye una técnica efectiva de transferir genes tanto in vitro como in vivo. En este método físico el plásmido o porción de ADN es recubierto en su superficie por gotas de oro o tungsteno, de 1 a 3 micras de diámetro. Estas partículas, aceleradas por una descarga eléctrica de un aparato o por un pulso de gas son «disparadas» hacia el tejido. El éxito de esta técnica puede estar asegurado en los procesos de vacunación. Otra alternativa es la inyección directa del ADN o ARN puro circular y cerrado covalentemente, dentro del tejido deseado. Este método económico, y un procedimiento no tóxico, si se compara con la entrega mediante virus. Como desventaja fundamental hay que señalar que los niveles y persistencia de la expresión de genes dura un corto periodo de tiempo. Esta tecnologia puede tener potencial como un procedimiento de vacunación y como e genes a un nivel bajo. Los liposomas catiónicos consisten en la mezcla de un 1 lipido catiónico de carga positiva y varias moléculas de ADN con carga negativa debido a los fosfatos de la doble hélice. Este tipo de  vectores se han usado en el tratamiento de la fibrosis sistica y en las enfermedades  vasculares. Se pueden realizar transferencias de estos vía catéter, aunque su uso es limitado, dedido a la baja eficacia de transfección del material genético contenido en este complejo a la célula hospedadora ya su relativa toxicidad. Un problema que se plantea con las técnicas anteriores es que el vector alcance realmente su objetivo y no quede diseminado por el organismo. Por ello existe un procedimiento que consiste en introducir, junto al material genético que queremos transferir, moléculas que puedan ser reconocidas por los receptores de la célula diana. Estas moléculas pueden ser azucares, péptidos, hormonas, etc. y su ventaja respecto a otros modelos es que se establece una interacción muy específica, como la interacción transportador/célula, y no muy inespecífica como la que se verifica entre las cargas iónicas.

Condiciones De Aplicabilidad De La Terapia Genica

FACTORES:
  1. Tipo de herencia. En general, las enfermedades mendelianas, determinadas por la acción de un único gen, son mejores candidatas que las enfermedades multifactoriales que, además de depender de la acción conjunta de varios genes, están influidas por factores ambientales. Una excepción a este criterio general lo constituye el cancer.
  2. El patrón de herencia. Las enfermedades recesivas son mejores candidatas a ser tratadas mediante terapia génica que las dominantes. En las primeras, debido a su carácter recesivo, podría ser suficiente añadir una copia del gen sano para recuperar el fenotipo normal, mientras que en las segundas esto no es suficiente en la mayoría de los casos y sería necesario recurrir a algún tipo de modificación dirigida del gen dañado, lo que complica enormemente las posibilidades de intervención.
  3. La naturaleza de la mutación causante de la enfermedad.Cuando la mutación es de pérdida de función, el defecto podría ser corregido por terapia de aumento génico, la más sencilla de todas. Por el contrario, las mutaciones de ganancia de función, no pueden ser tratadas añadiendo genes normales y necesitarían de otras estrategias más difíciles de llevar a cabo, como el bloqueo específico del gen mutado o la corrección dirigida de la mutación.
  4. Control de la expresión génica: Aquellos genes que no necesitan un excesivo control de su expresión, son los más fáciles de tratar. Por el contrario, cuando la expresión génica requiere un control estricto, los problemas que se presentan son mucho mayores.
  5. Tamaño del ADN codificante del gen a insertar: Los genes con secuencias de pequeño tamaño son siempre mejores candidatos, mientras que los genes con un ADN codificante de gran tamaño pueden ser difíciles de transferir al interior de las células debido a la dificultad de encontrar vectores adecuados.

Tipos De Terapia Genica

Existen, en teoría, dos tipos de TG: la Terapia Génica de Células Somáticas y la Terapia Génica de Células Germinales5, aunque sólo la primera está siendo desarrollada actualmente.


  • La TG germinal sólo existe como posibilidad, pues no se cuenta con la tecnología necesaria para llevarla a cabo. Además ha sido proscrita por la comunidad científica y por organismos internacionales por sus implicaciones éticas, las cuales discutiremos más adelante. La TG germinal trataría las células del embrión temprano, los óvulos, los espermatozoides o sus precursores. Cualquier gen introducido en estas células estaría presente no sólo en el individuo, sino que sería transmitido a su descendencia.
Se realizaría sobre las células germinales del paciente, por lo que los cambios generados por los genes terapéuticos serían hereditarios. No obstante, por cuestiones éticas y jurídicas, ésta clase de terapia génica no se lleva a cabo hoy en día.

  • La TG somática busca introducir los genes a las células somáticas (esto es, todas las células del organismo que no son gametos o sus precursores), y así eliminar las consecuencias clínicas de una enfermedad genética heredada o adquirida. Las generaciones futuras no son afectadas porque el gen insertado no pasa a ellas.
Se realiza sobre las células somáticas de un individuo, por lo que las modificaciones que implique la terapia sólo tienen lugar en dicho paciente.
·         Terapia in vivo: la transformación celular tiene lugar dentro del paciente al que se le administra la terapia.
·         Terapia ex vivo: la transformación celular se lleva a cabo a partir de una biopsia del tejido del paciente y luego se le trasplantan las células ya transformadas.

Limitaciones De La Terapia Genica En Humanos

El objetivo de la identificación y clonación de genes responsables de enfermedades de origen genético es el diagnóstico precoz, prenatal o postnatal. Pero diagnósticos eficaces sin terapia posible satisfacen poco a los afectados. La identificación de genes humanos mediante técnicas de ingeniería genética constituye, no obstante, el primer paso para desentrañar las bases moleculares y fisiopatológicas de una enfermedad. Conocidas éstas, las estrategias de investigación pueden ir en dos direcciones


  1. Vía farmacológica, para intentar compensar las consecuencias fisiológicas del disfuncionamiento celular.
  2. Vía genética, buscando la introducción de un gen foráneo -el transgén- en las células afectadas, para que sustituya al gen anómalo. Este enfoque es el que corresponde a la terapia génica.


Otra alternativa sería la introducción al azar del transgén en el genoma, con el riesgo de alterar la función de algún gen esencial. Las precauciones frente a estas estrategias tan imprecisas consisten en impedir la propagación y transmisión del sistema de transferencia del gen (el vector) y comprobar si la inserción del gen foráneo no conlleva la inactivación de algún gen del hospedador o la activación de algún proto-oncogén.


Estrategias De La Terapia Genica

Dependiendo de los objetivos que se persigan:

Inserción génica: Es la introducción en las células tratadas de una copia de un gen normal. Se aplica a enfermedades recesivas en las cuales no se produce el producto génico normal.

Es la técnica de terapia génica más empleada y prácticamente la única ensayada en los protocolos con células humanas afectadas por dolencias hereditarias. Sin embargo, es inservible para la casi totalidad de enfermedades producidas por genes de efecto dominante.

Dirección de mutaciones: Mediante algún procedimiento de modificación o cirugía génica que sustituya o bien el gen defectuoso por una copia normal del mismo o tan sólo sustituya la secuencia mutada del gen por la secuencia normal, recomponiéndose de este modo la función original del gen.
De llegar a ser aplicada esta modalidad podrían ser tratadas enfermedades dominantes.

Dirección de células específicas: insertando genes suicidas o genes estimuladores de la respuesta inmune bloqueando el ADN, el ARN o la proteína producida por el gen.

Existen diversos procedimientos posibles para conseguir este objetivo, como puede ser el uso de ADN anti sentido o la formación de hélices triples mediante el uso de oligonucleótidos de ADN.

Las Aplicaciones De La Terapia Genica

Aplicaciones
  • Marcaje génico: El marcaje génico tiene como objetivo, no la curación completa del paciente, sino la mejora del tratamiento de una determinada patología. Un ejemplo de ello sería la puesta a punto de vectores para ensayos clínicos.
  • Terapia de enfermedades monogénicas hereditarias: Se usa en aquellas enfermedades en las que no se puede realizar o no es eficiente la administración de la proteína deficitaria. Se proporciona el gen defectivo o ausente.
  • Terapia de enfermedades adquiridas: Entre este tipo de enfermedades la más destacada es el cáncer. Se usan distintas estrategias, como la inserción de determinados genes suicidas en las células tumorales o la inserción de antígenos tumorales para potenciar la respuesta inmune.


Historia De La Terapia Genica

Desde el descubrimiento de las enzimas de restricción en el año de 1.970 por Arber y Hamilton se sentaron las bases para transferir genes entre diferentes células u organismos, inclusive pertenecientes a diferentes especies. En 1.978 se realizó la primera hormona recombinante insertando el gen de la insulina en una bacteria E. coli. De allí en adelante se afianzaron los conocimientos necesarios para transferir genes a células humanas con el fin de alterar el fenotipo patológico y generar una nueva forma terapéutica. La primera transferencia se realizó en el año de 1.989 en un paciente con una inmunodeficiencia. Aunque no se encontraron efectos clínicos se explicitó que tampoco había efectos deletéreos como muchos apocalípticamente habían pronosticado. En 1.990 se trató con terapia génica un paciente que padecía de la deficiencia de la enzima adenosina-deaminasa presentando infecciones bacterianas a repetición. Aunque la mejoría fue temporal, con este ensayo se comprobó que la terapia génica tenía posibilidades terapéuticas reales.
Ashanti
Ashanti de Silva fue la primera paciente que recibió la terapia génica ex vivo para combatir la inmunodeficiencia combinada severa (SCID-ADA) cuando tenía cuatro años de edad. Pasó de ser una “niña burbuja” a vivir con una calidad de vida normal. (en la imagen, Ashanti a la edad de 9 años).

En la actualidad, se sigue investigando y desarrollando las distintas tecnicas de Terapia Génica.
Compañías farmacéuticas y centros de investigación de Europa, Estados Unidos y Japón ya han apostado a esta nueva posibilidad. De hecho, a principios de los 90 se incluía a grandes compañías como Sandoz, Ciba Geigy y Rhone Poulenc Rorer. En 1992, el mercado correspondiente fue estimado en 1,2 billones de dólares. Estimaciones más recientes alcanzan los 45 billones de dólares para el año 2015.
En Enero de 1989 los Institutos Nacionales de la Salud de los Estados Unidos aprobaban el protocolo clínico presentado por los Dres. Anderson, Blaese y Rosenberg para insertar un gen extraño en las células del sistema inmunitario de pacientes de cáncer. Aunque tal protocolo no representaba una terapia génica per se, sin embargo las técnicas utilizadas eran idénticas a las requeridas para la TG verdadera. En palabras del Dr. Anderson, ello significaba realmente que la tecnología para insertar genes en humanos había llegado. De hecho, poco después, en Septiembre de 1990, se aprobaba el primer ensayo clínico de auténtica terapia génica a los Dres. Blaese, Anderson y colaboradores: se trataba de introducir el gen que codifica para la enzima adenosin desaminasa (ADA) en niños que padecen una inmunodeficiencia combinada severa (SCID). Son los llamados “niños burbuja”. Poco tiempo después (Febrero 1991) se autorizó también el mismo tipo de TG en Italia (Dr. Bordignon y colabores en el Hospital San Raffaele de Milán). En 1995 ambos grupos de investigación publicaban los resultados de su experimentación clínica poniendo de manifiesto la eficacia de la técnica de TG ex vivo en los “niños burbuja”.

Tipos De Terapia Genica

Existen, en teoría, dos tipos de TG: la Terapia Génica de Células Somáticas y la Terapia Génica de Células Germinales, aunque sólo la primera está siendo desarrollada actualmente.

  • La TG somática busca introducir los genes a las células somáticas (esto es, todas las células del organismo que no son gametos o sus precursores), y así eliminar las consecuencias clínicas de una enfermedad genética heredada o adquirida. Las generaciones futuras no son afectadas porque el gen insertado no pasa a ellas.
Se realiza sobre las células somáticas de un individuo, por lo que las modificaciones que implique la terapia sólo tienen lugar en dicho paciente.
 
  • La TG germinal sólo existe como posibilidad, pues no se cuenta con la tecnología necesaria para llevarla a cabo. Además ha sido proscrita por la comunidad científica y por organismos internacionales por sus implicaciones éticas, las cuales discutiremos más adelante. La TG germinal trataría las células del embrión temprano, los óvulos, los espermatozoides o sus precursores. Cualquier gen introducido en estas células estaría presente no sólo en el individuo, sino que sería transmitido a su descendencia.
Se realizaría sobre las células germinales del paciente, por lo que los cambios generados por los genes terapéuticos serían hereditarios. No obstante, por cuestiones éticas y jurídicas, ésta clase de terapia génica no se lleva a cabo hoy en día.

·         Terapia in vivo: la transformación celular tiene lugar dentro del paciente al que se le administra la terapia.
·         Terapia ex vivo: la transformación celular se lleva a cabo a partir de una biopsia del tejido del paciente y luego se le trasplantan las células ya transformadas.